Non-DLVO silica interaction forces in NMP-water mixtures. II. An asymmetric system.

نویسندگان

  • Jung-Hyun Lee
  • J Carson Meredith
چکیده

The interaction between energetically asymmetric hydrophilic and hydrophobic surfaces has fundamental and practical importance in both industrial and natural colloidal systems. The interaction forces between a hydrophilic silica sphere and a silanated, hydrophobic glass plate in N-methyl-2-pyrrolidone (NMP)-water binary mixtures were measured using atomic force microscopy (AFM). A strong and long-range attractive force was observed in pure water and was attributed to the formation of capillary bridges associated with nanoscale bubbles initially present on the hydrophobic surface. When NMP was added, the capillary force and corresponding pull-off force became less attractive, which was explained readily in terms of the surface wettability by the binary solvent mixture. Similar to the case of symmetric (two hydrophilic) surfaces, the range of attraction between the asymmetric surfaces was maximized at around 30 vol % NMP, which is consistent with the formation of a thick adsorbed macrocluster layer on the hydrophilic silica surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydration forces between silica surfaces: experimental data and predictions from different theories.

Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope...

متن کامل

Existence of hydration forces in the interaction between apoferritin molecules adsorbed on silica surfaces.

The atomic force microscope, together with the colloid probe technique, has become a very useful instrument to measure interaction forces between two surfaces. Its potential has been exploited in this work to study the interaction between protein (apoferritin) layers adsorbed on silica surfaces and to analyze the effect of the medium conditions (pH, salt concentration, salt type) on such intera...

متن کامل

Interaction forces between oil-water particle interfaces--non-DLVO forces.

The interaction force between a rigid silica sphere and a butyl or octyl acetate droplet was measured in an aqueous environment using atomic force microscopy (AFM). The force measurements were performed without added stabilizers and the observed force behavior was found to be dependent on the type of inorganic electrolyte present, where the interfacial tension was constant over the electrolyte ...

متن کامل

Effects of Short-Chain Alcohols and Pyridine on the Hydration Forces between Silica Surfaces.

Forces between fully hydroxalated silica surfaces were measured using an atomic force microscope. The measurements were conducted in Nanopure water and in solutions containing various organic solutes such as methanol, ethanol, trifluoroethanol (TFE), and pyridine. The results obtained in Nanopure water showed a strong short-range repulsive force at distances below 15 nm. This non-DLVO force can...

متن کامل

VLE Predictions of Strongly Non-Ideal Binary Mixtures by Modifying Van Der Waals and Orbey-Sandler Mixing Rules

By proposing a predictive method with no adjustable parameter and by using infinite dilution activity coefficients of components in binary mixtures obtained from UNIFAC model, the binary interaction parameters (k12) in van der Waals mixing rule (vdWMR) and Orbey-Sandler mixing rule (OSMR) have been evaluated. The predicted binary interaction parameters are used in Peng-Robinson-S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 27 11  شماره 

صفحات  -

تاریخ انتشار 2011